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A Comparison of Methods for Pharmacophore Generation with the Catalyst
Software and their Use for 3D-QSAR: Application to a Set of 4-
Aminopyridine Thrombin Inhibitors
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Abstract: The method of structure-based pharmacophores for use in 3D-QSAR as
implemented by Gillner and Greenidge [6] is further examined. Conformational models are
generated using both Catalyst [3] and Macromodel [7].  Ki estimates obtained with the
pharmacophore models are compared with observed values for a set of 4-aminopyridine
thrombin inhibitors [8].

INTRODUCTION suitability of fast conformer generation for database scoring
has hitherto not been investigated in detail. We also
examined how the root mean square deviation (R.M.S.D.)
values and correlation coefficients between predicted and
observed experimental values were influenced by the choice
of mapping mode (fast fit (rigid) or best fit (flexible)) of
inhibitors to the structure-based and automatically generated
pharmacophore models. Conformational models (both in
vacuo and in continuum solvent) were also generated using
Macromodel [7] and the 3D-QSAR results compared with
the best mode of Catalyst conformer generation.

We will not attempt to review the field of
pharmacophores as there are many people better qualified to
do so. Instead we refer interested readers to a recently
published book on the subject [1] and an excellent
contemporary article [2]. Here we wish to share our
experiences with the popular 3D-QSAR and database
searching software Catalyst [3].

In Catalyst, a conformational model is an abstract
representation of the accessible conformational space of a
ligand. It is assumed that the biologically active
conformation of a ligand (or a close approximation there of)
should be contained within this model. Given a ligand
training set (ligand conformational models and experimental
activity values), Catalyst is able to automatically generate a
number of pharmacophore models [4]. These specify the
relative alignments and active conformations of the ligands
consistent with their binding to a common receptor site. It is
strongly recommended that for automatic pharmacophore
generation, that the best conformation generation method be
used for the training set of inhibitors instead of the fast mode
[3]. Although both methods emphasize conformational
coverage, best conformer generation considers the
arrangement in space of chemical features rather than simply
the arrangement of atoms. However, the fast option generates
conformers at interactive speed, whereas the best option
requires an order of magnitude more time. Given the
limitations of our computing power we sought to investigate
whether there was in fact any difference in the quality of the
3D-QSAR results obtained by either method. These
automatically generated pharmacophores are compared with
structure-based pharmacophores [5,6]. Additionally, we
consider the impact of conformer generation on database
scoring. Though adequate for database searching, the

METHOD

Catalyst Pharmacophore Construction and 3D-QSAR

A pharmacophore model (in Catalyst called a hypothesis)
[3] consists of a collection of features necessary for the
biological activity of the ligands arranged in 3D-space, the
common ones being hydrogen-bond acceptor, hydrogen-bond
donor and hydrophobic features. Hydrogen bond donors are
defined as vectors from the donor atom of the ligand to the
corresponding acceptor atom in the receptor. Hydrogen bond
acceptors are analogously defined. Hydrophobic features are
located at the centroids of hydrophobic atoms. Catalyst
features are associated with position constraints that consist
of the ideal location of a particular feature in 3D-space
surrounded by a spherical tolerance [8]. In order to map to
the pharmacophore it is not necessary for a ligand to possess
all the appropriate functional groups capable of
simultaneously residing within the respective tolerance
spheres of the pharmacophoric features. However, the fewer
features an inhibitor maps to, and the poorer its fit to them,
then the lower its affinity will be predicted to be. Each
feature is associated with a weight (a measure of its proposed
importance to the pharmacophore as a whole). These models
may be used for 3D-QSAR analyses or as database queries.*Address correspondence to this author at the Thrombosis Research
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Training Set the variable, confAnalysis.best.max.successive.failures was
set equal to 100. Catalyst default values were used
throughout unless otherwise stated. All calculations were
performed using an Iris Indigo Elan, R4000, memory size
128Mbytes, 100 MHZ IP20 processor.

The training set (inhibitor conformational models and Ki
values) for generation and regression of automatically
generated pharmacophores, but regression only of structure-
based pharmacophores, consisted of 16 inhibitors taken from
the data set of Bursi and Grootenhuis [9] (inhibitors with
undefined stereochemistry were excluded), Fig. (1). The Ki
values ranged from 4nM to 2000nM. Sixteen compounds
represent the minimum recommended number of molecules
to be included in a training set. In the first part of this study
up to 250 conformers were generated using the fast
conformer generation method, with a maximum
conformational energy of 20 kcal/mol above the lowest
energy conformation of the inhibitor found by the poling
algorithm. Thereafter, the best conformer method was used
with an energy cut off of 10 kcal/mol for all molecules with
the exception of compound 8 for which a value of 15
kcal/mol was used. These latter values reflect the upper
energy limit of conformations of inhibitors mapping to the
structure-based pharmacophore with 30% scaling of excluded
volumes according to atomic van der Waals radii and
regressed with the fast conformer model. In the Catalyst file

Automatically Generated Pharmacophores

Catalyst 4.0 [3] was used to automatically generate 10
pharmacophore models with up to a total of five features.
Constraints were placed on the number of features such that
there could be respectively, 0-5 hydrogen bond donors,
hydrogen bond acceptors, hydrophobic aliphatic or
hydrophobic aromatic features. During hypothesis
generation, molecules are mapped to the pharmacophore
features using their pre-stored conformations (fast fit). The
dumping score for the null hypothesis was 80 bits. The
larger the difference between the cost of a generated
hypothesis and that of the null hypothesis the better the
expected predictive power of the hypothesis for external
ligands not previously included in the training set. The total
costs of the hypotheses varied over a narrow range of between
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Fig. (1). Structures and experimental Ki values (nM) of 4-aminopyridine thrombin inhibitors training set members [8].
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Fig. (2). Mapping of Crystal Structure Conformation of Compound 1 to the Structure-Based Thrombin Pharmacophore (no excluded
volumes). The Hydrogen Bond Donor Feature is Labelled as is correspondence of hydrophobic features to thrombin active site (S1, S2
and S4).

75.94 to 78.19 bits. The cost factor Config  is a measure of
the magnitude of the hypothesis space for a given training
set. If the Config  value exceeds 17, there are more degrees of
freedom in the training set than Catalyst can properly deal
with and the hypothesis result may not be useful. The
generated hypotheses had Config values of 18.84.

all compounds the MMFF94s [12] force field was used –
either in vacuo or in combination with the GB/SA [13]
solvation model. GB/SA treats solvent as analytical
dielectric continuum that starts near the van der Waals
surface of the solute and extends to infinity. The model
includes both generalized Born-based (GB) [13] solvent
polarization terms and surface area-based (SA) [14] solvent
displacement terms. All non-bonded cutoffs were set to
infinity for all calculations. Energy minimizations were
performed with the Truncated Newton-Raphson Conjugate
Gradient (TNCG) [15] method, which involves the use of
second derivatives; the derivative convergence criterion was
set to 0.05 kJ/Å-mol. Conformational search was performed
by the Monte Carlo [16] for the random variation of all of the
rotatable bonds method combined with the so-called Low
Mode Conformational Search (LMCS) [17]. 10,000 Monte
Carlo steps were carried out for each calculation and all
structures up to 10 kcal/mol above the global energy
minimum (GEM) were stored. All calculations were
performed either with the Linux version of MacroModel on a
750 MHz Pentium III processor or the Sun version on a Sun
Ultra 2 machine.

Structure-Based Pharmacophores

The location of features in the structure-based
pharmacophore were defined by the crystallographic
coordinates of atoms in the compound 1/thrombin complex
(PDB reference code 1UVT, resolution 2.5 Å). The inhibitor
was extracted from the enzyme/inhibitor complex and this
crystallographic conformation registered. The inhibitor was
able to successfully map to all features of the described
pharmacophore using either fast or best fit (Fig. (2)).
Subsequently, the remaining atoms delimiting the active site
were represented as excluded volumes (space which the
inhibitor is not allowed to occupy) defined within acut off of
6Å from the inhibitor using Insight II [10]. The values for
the van der Waals radii were taken from Pauling [11] (i.e.
1.4, 1.5, 1.7 and 1.85 Å for oxygen, nitrogen, carbon and
sulphur atoms respectively). RESULTS AND DISCUSSION

Macromodel
We analyzed the ability of both structure-based and

automatically generated pharmacophore models to explain
the differing Ki values of training set members whose
conformations were generated by the fast option.All conformational searches were performed using version

7.0 of the molecular modeling program MacroModel [7]. For
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Structure-Based Pharmacophores workbench no Ki estimate could be obtained for the Catalyst
generated conformation of compound 1. Instead the
compound was reported to be just on the borderline of
satisfying the query. In order to create a credible QSAR
model it is essential that the training set ligands map to the
pharmacophore features in the optimal manner. Thus, when a
predefined pharmacophore model exists (i.e. one not
automatically generated by the Catalyst software), it would
surely be desirable to perform the regression using a flexible
fit procedure even though it has previously been concluded
that for automatically generated pharmacophores, this affords
no advantage.

Excluded volumes were incremented in steps of 10% of
their respective atomic van der Waals radii, and the
corresponding structure-based pharmacophore regressed
against the training set (Fig. (3)). The structure-based
pharmacophore without any excluded volumes performs
worse with respect to correlation coefficent and R.M.S.D
values than do the equivalent pharmacophores augmented
with excluded volumes scaled from 10% to 70% of
respective atomic van der Waals radii. The optimal scaling
of excluded volumes as a percentage of atomic van der Waals
radii is 30% (Fig. (3)). An initially, somewhat anomalous
result occurs for excluded volumes scaled to 100% of their
respective atomic radii, in that the correlation coefficient and
R.M.S.D. values are comparable to that of a pharmacophore
without excluded volumes. However, this is because only
three training set members (compounds 1, 8 and 10) are able
to map to the pharmacophore. The other thirteen molecules
are consequently given the same affinity values by default
(the intercept of the slope), which may or may not closely
approximate the observed affinity. Thus, the resulting
correlation coefficient and R.M.S.D. values are an artifact of
the inability of most of the data set to map to the
pharmacophore.

Automatically Generated Pharmacophores

By default Catalyst produced 10 alternative
pharmacophore models (Table 1). The automatically
generated pharmacophores perform very well for the training
set of inhibitors, with correlation coefficients above 0.9 for
all ten models, and R.M.S.D. values approximately ranging
between 0.5 and 0.7 (Table 1). Significantly, the
automatically generated pharmacophores assume that an
oxygen atom of the sulphone moiety is involved in
hydrogen bonding with the receptor (Fig. (5)) and not the 4-
amino group, as in the crystal structure. Though there are
nominally ten distinct models, many of them are in fact very
similar (Table 2). Model 2 differs from Model 1 only in that
the locations of a hydrophobic aliphatic and a hydrophobic
aromatic feature are swapped (Table 2). The two models
share the same feature weights and co-ordinates for all five
equivalent features, hence the identical correlation coefficient
and R.M.S.D. values produced by both models. Models one
to seven share a common hydrophobic feature (Table 2)
which is mapped by the methyl group of compound 1.
Similarly, Models 3 to 6 include a hydrogen bond accepting
feature, and a hydrophobic aliphatic (aromatic Model 6)
feature with identical coordinates between models (Table 2).
The coordinates and type (hydrophobic aliphatic or
hydrophobic aromatic) of the other two features in these
models are also similar, but the weights may vary between
models (Table 2), hence the limited spread of correlation

The inhibitor extracted from the 1UVT crystal structure
is able to map to all features of the structure-based
pharmacophore models using fast fit. A Ki estimate of 0.086
nM versus an observed value of 25nM was obtained for the
model with excluded volumes scaled to 30% of atomic van
der Waals radii. The Catalyst generated conformer is
retrieved as a hit using either fast or best flexible search
when the pharmacophore models are used as database
queries. In order to be retrieved as a hit a molecule must be
able to map to all features of a pharmacophore. However,
using fast fit (in which features may be omitted) compound
1 does not map to all features of the pharmacophore models
(Fig. (4)). This means that even though a conformer such
that all features can be mapped (without minimization) is
present within its conformational model it does not obtain
the best overall fit score in doing so. In the View Database

Fig. (3). Structure-Based Pharmacophores (fast conformational model): Relationship Between the Scaling of Excluded Volumes as a
Percentage of Atomic van der Waals Radii and R.M.S.D. values and Correlation Coefficient R Between Observed and Calculated Ki
Values.



A Comparison of Methods for Pharmacophore Generations Mini Reviews in Medicinal Chemistry, 2001, Vol. 1, No. 1    83

Fig. (4). Catalyst Generated Conformer and Mapping of Compound 1 to the Structure-Based Pharmacophore. The Hydrogen Bond
Donor Feature is Labelled as is correspondence of hydrophobic features to thrombin active site (S1, S2 and S4).

coefficient and R.M.S.D. values for Models 3 to 6. Models 7
and 8 have some features and coordinates in common with
Models 1 and 2; Models 9 and 10, unlike the other models
lack a hydrogen bond accepting feature and have only four
features.

stored conformations of molecules are rigidly fit to a
hypothesis, fit score variations are due to differences in the
conformational models of the molecules. In order to remedy
inconsistencies in the conformational models we performed a
best fit of all of the molecules to the first automatically
generated hypothesis. The best fit method minimizes the
inhibitor so as to optimize the fit to the pharmacophore
features. The R.M.S.D. value between experimental and
estimated affinities then increased from 0.49 to 2.41.
Effectively, the pharmacophore became less selective with
respect to its ability to be able to distinguish between good
and poor inhibitors. This increase was for the main part a
consequence of the improved fit scores for many of the
compounds such that their Ki values were estimated to be
much better than their observed values. For over half the
molecules in the training set, this overestimation was by a
factor of 10 or more. The increase in R.M.S.D. values for the
structure-based pharmacophore without excluded volumes
was less pronounced, from 1.48 to 2.10 and for the structure-
based pharmacophore with excluded volumes scaled to 30%
of atomic van der Waals radii, the increase was from 1.05 to
1.29 [18]. Thus, it may be that structure based
pharmacophores, especially those containing excluded
volumes are less sensitive to the method used to generate
conformational models for use in hypothesis regression than
automatically generated pharmacophores. This is entirely
consistent with the complete dependence of the automatically
generated pharmacophores on the conformational model and

Comparison of Automatically Generated and Structure-
Based Pharmacophores

The automatically generated pharmacophores seem to
perform better than the structure-based pharmacophores,
based upon correlation coefficients and R.M.S.D. values of
inhibitor conformations generated using the fast option
(Table 1, Fig. (3)). However, the proposed mapping modes
of the automatically generated pharmacophores gave cause for
concern. The para-benzene-sulphone substituents of
compounds 2, 5, 13 and 15 respectively, are not expected to
affect the conformations that the molecules are able to adopt.
It was therefore surprising that these models should
differentiate between these molecules in any way as they lack
excluded volumes. For instance, Model 1 ranked the
compounds in the order compound 13 < compound 5 <
compound 15 < compound 2. Examination of the hypothesis
log file revealed that all four of these compounds mapped to
4 out of a possible five features, hence the distinction in
affinity estimates arose from their fit score. Since in the fast
fit affinity estimation used in hypothesis generation, the pre-
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Table 1. Catalyst Automatically Generated Pharmacophores:
Root Mean Square Deviation (R.M.S.D.) and Correlation Coefficient R, of Observed and Calculated Experimental
Affinities

Pharmacophore Model R R.M.S.D. Feature Weights Total Cost

1 0.965 0.488 1.78707 75.9360

2 0.965 0.488 1.78707 75.9359

3 0.951 0.568 1.92524 76.3927

4 0.950 0.576 1.95088 76.4479

5 0.948 0.585 1.94759 76.5332

6 0.948 0.585 1.94760 76.5331

7 0.945 0.607 1.79145 76.9602

8 0.938 0.638 1.86299 77.1424

9 0.918 0.731 2.14544 78.1692

10 0.915 0.743 2.01069 78.1921

Table 2. Features and Coordinates of Automatically Generated Pharmacophores

Pharmacophore Model Features and coordinates

1 HBA

7.58, 6.75. -3.00

9.67, 5.11, -4.42

Hphobic

3.48, 7.44, -4.35

Aromatic

6.92, 3.51, 0.08

Hphobic

1.59, 0.44, 4.67

Hphobic

9.26, 1.54, -1.26

2 HBA

ibid

Aromatic

ibid

Hphobic

ibid

Hphobic

ibid

Hphobic

ibid

3 HBA

7.44, 6.55, -3.04

9.82, 5.31, -4.38

Hphobic

3.08, 6.23, -4.73

Hphobic

7.02, 3.29, 0.05

Hphobic

2.23, -0.35, 4.66

Hphobic

ibid

4 HBA

ibid

Hphobic

ibid

Hphobic

7.05, 3.33, 0.07

Aromatic

ibid

Hphobic

ibid

5 HBA

ibid

Hphobic

ibid

Aromatic

ibid

Hphobic

2.30, -0.25, 4.78

Hphobic

ibid

6 HBA

ibid

Aromatic

ibid

Hphobic

ibid

Aromatic

ibid

Hphobic

ibid

7 HBA

7.66, 6.82, -2.99

9.59, 5.04, -4.44

Aromatic

3.48, 7.44, -4.35

Hphobic

2.03, 0.72, 5.05

Hphobic

2.30, -0.25, 4.78

Hphobic

ibid

8 HBA

7.58, 6.75. -3.00

9.67, 5.11, -4.42

Aromatic

3.48, 7.44, -4.35

 Hphobic

6.78, 3.32, -0.06

Hphobic

1.59, 0.44, 4.67

Aromatic

6.78, 3.32, -0.06

9 Hphobic

3.08, 5.43, -5.13

Hphobic

7.11, 3.23, -0.03

Hphobic

2.23, -0.35, 4.66

Hphobic

9.26, 1.54, -1.26

10 Hphobic

4.22, 7.83, -4.21

Aromatic

6.93, 2.71, 0.72

Aromatic

6.92, -4.11, 2.93

Aromatic

9.39, 3.80,2.25

KEY: HBA = Hydrogen Bond Acceptor, Hphobic = Hydrophobic, Aromatic = Hydrophobic Aromatic.

inhibitor structures of the training set. It follows that
structure-based pharmacophores are influenced to a lesser
extent by the conformational model, as pharmacophoric
features are defined using 3D experimental information from

both the inhibitor and enzyme. Though of course the
inhibitors must nevertheless possess a conformation which
allows them to map to the pharmacophore model.
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Fig. (5). Mapping of Compound 1 to the Automatically Generated Pharmacophore (Model 1). All features are hydrophobic with the
exception of the hydrogen bond accepting feature to which the sulfone group maps.

Best Conformational Model Scoring- Fast Versus Best Conformational Model

We then went on to generate a conformational model for
the inhibitors by the recommended method using the best
option. This took approximately one week on an Iris Indigo
Elan (see Methods). We regressed the structure-based
pharmacophores with the new conformational models, but
did not attempt to automatically generate new hypotheses.
The training set contains some inhibitors (compounds 2 and
13) whose affinity differences can only be expected to be
reproduced if some kind of steric restriction is included in
the model, e.g. excluded volumes. It might be argued that
including such inhibitors in the training set for automatically
generated pharmacophores is then inappropriate. However, it
is likely that in the early stages of model development that
such potential steric problems would not be known.

A marked difference in scores is obtained for the Catalyst
generated conformational models of compound 1, fast and
best mode in the View Database workbench. The structure-
based pharmacophore with excluded volumes scaled at 30%
with respect to atomic radii and regressed with the training
set whose conformational models had been generated with
the best mode was used. It is not possible to obtain a Ki
estimate for compound 1 generated via fast mode but it is for
the conformation generated by the best mode. Additionally,
it was found that there is a 1000 fold difference in the Ki
estimate obtained for the stored crystal structure
conformation of compound 1 (0.28nM) versus the Catalyst
generated conformation (280nM). Thus, given that
‘chemically meaningful tolerances are on the same scale as
the resolutions that are possible using point conformers for
small- to medium-sized drug molecules’ [19], the aboveThe findings for the fast and best method of conformer

generation are similar. There is very little variation in the
R.M.S.D. values and correlation coefficients for the structure-
based pharmacophore without excluded volumes regressed
against the best generated conformational model of inhibitors
and for the fast model (R.M.S.D. values of 1.38 and 1.47
respectively and correlation coefficients of 0.66 and 0.60
respectively). These values are even more similar for
pharmacophores with excluded volumes (e.g. scaling of
excluded volumes of 30% with respect to atomic van der
Waals radii, R.M.S.D values of 1.04 and 1.15 and
correlation coefficients of 0.82 and 0.79 respectively for fast
and best conformation generation). These results support our
assertion of the likely lack of sensitivity of structure-based
pharmacophores (as opposed to automatically generated
pharmacophores) to the mode of generation of their
conformational models, fast or best.

Table 3. Structure-based Pharmacophore Model with 30%
Scaling of Excluded Volumes as a Percentage of
Atomic van der Waals Radii Regressed with
Different Conformational Models of the
Training Set (Figure 1, 16 Molecules). A
Comparison of R.M.S.D. and Correlation
Coefficients Between Observed and Calculated Ki
Values

Conformational Model R.M.S.D. R

Catalyst-best 1.15 0.79

Macromodel-in vacuo 1.52 0.57

Macromodel-continuum solvent 1.21 0.75
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result suggests that the scoring function needs to be more
tolerant of the generated conformers. To further investigate
this point we generated conformations both in continuum
solvent and in vacuo using Macromodel [7]. A precedent for
this exists in the work of Langgård et al.[20].

are considered, the macromodel search with GB/SA turned
on produced the best results. Further evidence that with
Macromodel generated conformational models, Catalyst is
able to more closely reproduce experimentally observed
inhibitor binding modes is given by the pharmacophore with
100% scaling of excluded volumes as a percentage of atomic
van der Waals radii. For the Catalyst fast conformer model
only three inhibitors could map to this pharmacophore, and
with the best model it was not possible to obtain a QSAR
model. However, with the Macromodel in vacuo
conformation model, only five molecules are unable to map
to the pharmacophore, and for at least three of these
molecules, this lack of mapping is readily attributable to the
presence of bulky substituents [6](compounds 2, 13 and 14).

Macromodel Conformation Models Versus Catalyst Best
Conformational Model

Though they did not lead to any overall improvement in
Ki predictions (Table 3), it can be argued that the
Macromodel generated conformers result in a better 3D-
QSAR model. They map to the pharmacophore in a manner
which is more consistent with the experimentally observed
inhibitor binding modes (Table 4) than the Catalyst
generated conformers (using fast fit). Another study [21]
suggests that solvation effects may play a role in influencing
Ki values for this series of inhibitors. Indeed the two outliers
of the Macromodel in vacuo model correspond to two of the
molecules highlighted in that study (compounds 3 and 9). If
these molecules are removed from the data set R.M.S.D and
correlation coefficient values improve to 1.11 and 0.8
respectively. Hence, using an alternative means to generate
the conformational models represents only one of the steps
required to improve the 3D-QSAR model whilst retaining
the current scoring function. When both Table 3 and Table 4

The work presented here has aspects in common with a
number of recently published articles in that it addresses the
question of how to best utilize existing structural
information for docking, correct ranking of binding modes,
and scoring of molecules in a receptor binding site [22].

CONCLUSIONS

Structure-based pharmacophores appear to be less
sensitive to the method of conformational model generation
of the training set than those automatically generated by the

Table 4. A Comparison of the Structure-based Pharmacophore (30% scaling of Excluded Volumes, Figure 2) Features
Mapped by the Six Inhibitors of the Training Set With the Best Ki Values and Whose Conformational Models are
Generated By Different Methods

compound Method* S1 HBD S2 ‘Other’ S4

Catalyst + + + + -

12 In vacuo + - + + +

solvent + + + + -

Catalyst + + + + -

10 In vacuo + + + + +

solvent + + + + +

Catalyst + + + + -

8 In vacuo + - + + +

solvent + - + + +

Catalyst + + + + -

1 In vacuo + + + + +

solvent + + + + +

Catalyst + + + + -

7 In vacuo + + + + +

solvent + - + + +

Catalyst + + + + -

6 In vacuo + + + + -

solvent + + + + -

* Catalyst = Catalyst [3] best  method of conformer generation, and in vacuo and solvent refer to Macromodel [7] generated conformers(see Methods Section)
# Benzene-sulfone moiety occupies the SI pocket instead of pyridine ring as observed in the crystal structure. S1, S2, S4 refer to enzyme active site. 'Other' refers to aromatic
feature mapped by central ring of compound 1. HBD = Hydrogen Bond Donor. If the S4 site is not mapped an aromatic ring of the compounds tends to part into the
solvent.
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Catalyst software, in terms of R.M.S.D. values and
correlation coefficients between predicted and observed
values. However, neither conformational models generated
using fast or best mode fared well in producing mapping
modes that were consistent with that crystallographically
observed for compound 1. In this study, Macromodel
generated conformers were much more successful in this
regard. Thus, at least for structure-base pharmacophores, and
catalyst generated conformers, it may be necessary to re-
examine the current scoring algorithm which seemingly
rewards molecules mapping to fewer features 'well' as
compared to more features 'poorly'. We also showed that it
is possible to optimize pharmacophore models for 3D-QSAR
by scaling the excluded volumes.
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